⟸ Go Back ⟸
Exercise 9 (Homework 6).
(R (decidable/recursive languages), RE (semi-decidable/ recursively enumerable languages))

Are they (computable) functions?

A relation R on \mathbb{N} (that is, a set R \subseteq \mathbb{N} \times \mathbb{N}) is a (partial) function if whenever (x,y)\in R and (x,z)\in R, it holds that y=z. Which of the following relations on \mathbb{N} are functions? Are the functions computable?

  1. \{ (x,y) \mid M_x(x)=y\}.
  2. \{ (x,y) \mid M_x(x)\leq y\}.
  3. \{ (x,y) \mid M_x(x)\geq y\}.
  4. \{ (x,y) \mid M_x(x)=M_y(y)\}.
  5. \{ (x,y) \mid M_x(x) \text{ stops in } y \text{ steps or more}\}.
  6. \{ (x,y) \mid M_x(x) \text{ stops in exactly } y \text{ steps}\}.
  7. \{ (x,1) \mid M_x(x)\!\downarrow\}\cup \{ (x,0) \mid M_x(x)\!\uparrow\}.
  8. \{ (x,1) \mid M_x(x)\!\downarrow\}.
  9. \{ (x,0) \mid M_x(x)\!\uparrow\}.
  10. \{ (x,y) \mid y= \lvert\{z\mid M_x(z)\!\downarrow\}\rvert\ \}.